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Motivation

• Logistic regression with predictor variables (or covariates) is
used in a wide variety of applications.

• Such as: biostatistics, ecological, genomics, finance, etc.

• For example, in medical studies:

I response variables are usually recorded as binary
outcomes (e.g., does a patient have diabetes); and

I predictor variables are often recorded characteristics, attributes
or measurements taken on patients (e.g., age or the recorded
body mass index values of each patients).



Motivation cont. . .

• When observed predictor variables are measured with error
– i.e., measured imprecisely, then there may be:

I a loss of statistical power;

I bias in parameters estimates; and

I loss of features.

I So the analysis can lead to poor inference.



Motivation cont. . .

• Many measurement error models have been developed to
account for error-in-predictor variables (Carroll et al., 2006).

• For logistic regression, most of the literature has been
primarily developed for parametric linear structures, and less
so for quadratic structures.

• Existing methods that can incorporate quadratic models (e.g.,
regression calibration or SIMEX) usually make the assumption
that the distribution of true predictors is normal.



Motivation cont. . .

• In practice however, this assumption can be quite restrictive.

• Assuming normality on true predictors when in fact they are
non-normal can lead to inconsistent parameter estimates.

• For example (see next slide).



Example: Body mass index data of diabetics in Taiwan
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(a) qq−plot for body mass index

 Body mass index (kg m2)

(b) histogram of body mass index
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Aims

• Our aims are to develop new logistic regression models that:

I take into account error-in-variables in predictors;

I allow for quadratic models to be fit;

I make less restrictive (or no) assumptions on the true predictor,
hence leading to consistent estimation; and

I are more computationally efficient compared to other methods.



Notation

• For i = 1, . . . , n, let Yi be a random sample of independent
binary response variables.

• Let Zi be categorical and Xi be a continuous covariate, write

P(Yi = 1 | Zi ,Xi ) = H(α1 + α2Zi + β1Xi + β2X
2
i )

where H(u) = {1 + exp(−u)}−1 is the logistic function.

• The MLE of θ = (α1, α2, β1, β2) is the root of the following
score function:

G (θ) =
n∑

i=1

S(θ,Yi ,Zi ,Xi ) =
n∑

i=1

(ZT
i ,X

T
i )T{Yi − H(θ,Xi ,Zi )}.



Classical measurement error and näive method

• Now, suppose that Xi is measured with additive random error
and we only have the observed surrogate variable Wi .

• We assume that Wi = Xi + εi for all i , where εi ∼ N(0, σ2) is
the measurement error independent of Xi ,Zi and Yi .

• If σ2 > 0, the näive method replaces Xi by Wi and solves

GN(θ) =
n∑

i=1

S(θ,Yi ,Zi ,Wi ) = 0. (1)

Generally, E{GN(θ)} 6= 0, which result in biased θ.



Regression Calibration (RC)

• Regression calibration (RC) is a convenient approximation method
commonly used to adjust for bias.

• Briefly, the RC method replaces Wi and W 2
i by the following Best

linear Unbiased Estimators: E(Xi |Wi ) and E(X 2
i |Wi ) in the

estimating equation (1), respectively.

• If Xi ∼ N(µx , σ
2
x), the above conditional expectations can be easily

calculated

• However, the RC may yield a considerable amount of bias when
either σ2 or β are moderately large.



Refined Regression Calibration (RRC)

• The bias can be reduced by refining the approximation
for E{H(θ,Xi ,Zi ) | Zi ,Wi}.

• Known as refined regression calibration (RRC).

• Specifically, we apply a simple logit-to-normal approximation,
and we can show that

E {H(θ,Xi ,Zi ) | Zi ,Wi} ≈ E{Φ(cαZi + cβTXi ) | Zi ,Wi}

≈ H

{
αZi + βTE(Xi | Zi ,Wi )√
1 + c2Var(βTXi | Zi ,Wi )

}

where c = 1/1.7 is a constant, see Johnson et al. (1995).



Refined Regression Calibration cont. . .

• Again assuming that Xi ∼ N(µx , σ
2
x), and with some algebra

we can find E(Xi | Zi ,Wi ) and Var(βTXi | Zi ,Wi ).

• We let

p̃i (θ) = H

{
αZi + βTE(Xi | Zi ,Wi )√
1 + c2Var(βTXi | Zi ,Wi )

}
,

and estimate θ by solving the usual estimating equation.

• But, both RC and RRC need normality assumptions on Xi .



Weighted Corrected Score (WCS)

• So, can we avoid making normality assumption on Xi but still
obtain consistent and asymptotically normal estimators?

• An alternative approach is to seek out a “correctable”
weighted score function.

• That is, for i = 1, . . . , n, let ωi be weights so that

Sω(θ,Yi ,Zi ,Xi ) = ωiS(θ,Yi ,Zi ,Xi )

is an unbiased estimating equation.



Weighted Corrected Score cont. . .

• Recently, Chen et al. (2015) showed that there exists
a S∗ω(θ,Yi ,Zi ,Wi ), such that

E {S∗ω(θ,Yi ,Zi ,Wi ) | Zi ,Xi} = Sω(θ,Yi ,Zi ,Xi )

yields consistent and asymptotically normal estimators.

• Chen et al. (2015) only considered linear logistic regression.

• We develop similar estimators (or weighted score functions)
but specifically for quadratic models.



Weighted Corrected Score cont. . .

• Required condition: Provided that |β2σ2| < 1 holds, then
we can show the existence of S∗ω.

• We refer to this as a weighted corrected score (WCS) function:

G ∗ω(θ) =
n∑

i=1

S∗ω(θ,Yi ,Zi ,Wi )

where S∗ω = (S∗Tω1 , S
∗
ω2,S

∗
ω3)T; the first component is a 2× 1

vector (due to Zi ) and the latter two are both scalars.

• These weights were trickier to calculate (see next slide), but
we now have estimators that are consistent and asymptotically
normal, and allow for quadratic structures.



Weighted Corrected Score cont. . .

• For j = 1, 2, we define Dj = 1 + (−1)jβ2σ
2 and

Cj (θ, Yi , Zi ,Wi ) = exp

{
(−1)j

1

2
αZi + (−1)j

1

2

βTWi

Dj

−
1

8

β2
1σ

2

Dj

}
.

• The three components of S∗ω are given as follows:

S∗
ω1(θ, Yi , Zi ,Wi ) = Zi

{
YiC1(θ, Yi , Zi ,Wi )√

D1

+
(Yi − 1)C2(θ, Yi , Zi ,Wi )√

D2

}
,

S∗
ω2(θ, Yi , Zi ,Wi ) =

 Wi√
D3
1

+
β1σ

2

2
√

D1

 YiC1(θ, Yi , Zi ,Wi )

+

 Wi√
D3
2

−
β1σ

2

2
√

D2

 (Yi − 1)C2(θ, Yi , Zi ,Wi ),

S∗
ω3(θ, Yi , Zi ,Wi ) =

W 2
i + β1Wiσ

2 + 1
4
β2
1σ

4√
D5
1

−
σ2√
D3
1

 YiC1(θ, Yi , Zi ,Wi )

+

W 2
i − β1Wiσ

2 + 1
4
β2
1σ

4√
D5
2

−
σ2√
D3
2

 (Yi − 1)C2(θ, Yi , Zi ,Wi ).



Simulations: Finite sample performance

• We considered two scenarios where the true distribution for X was
set to the following: (1) X ∼ N(0, 1); and (2) X ∼ (χ2

3 − 3)/
√

6;

• We simulated measurement error ε ∼ N(0, σ2) to get W = X + ε.

• For both scenarios above we set: σ2 = 0.30, n = 200, 1000 and true
parameter values: θ = (0.50, 1,−0.30).

• We then generated Y and fit the näive model and four logistic

regression (measurement error) models for each scenario.



Simulation scenario 1: X ∼ N(0, 1)

• For further comparison, we also included another consistent method

called the extensively corrected score (ECS, Huang et al., 2015).

scenario 1 β1 = 1 β2 = −0.30
method Mean SD SE RMSE CP Mean SD SE RMSE CP
näive 0.73 0.16 0.16 0.65 0.57 -0.15 0.11 0.11 0.78 0.69
RC 0.95 0.21 0.21 0.80 0.92 -0.26 0.20 0.18 0.88 0.92
RRC 1.04 0.26 0.26 0.88 0.95 -0.32 0.26 0.23 0.93 0.96
ECS 1.12 0.40 0.42 0.99 0.96 -0.38 0.48 0.40 1.07 0.96
WCS 1.12 0.33 0.29 0.96 0.93 -0.41 0.36 0.30 1.05 0.91

Table: Estimates, RMSE and 95% coverage (CP) for n = 200.

scenario 1 β1 = 1 β2 = −0.30
method Mean SD SE RMSE CP Mean SD SE RMSE CP
näive 0.73 0.07 0.07 0.63 0.03 -0.15 0.05 0.05 0.77 0.11
RC 0.94 0.09 0.09 0.77 0.90 -0.25 0.08 0.08 0.85 0.89
RRC 1.01 0.11 0.11 0.82 0.95 -0.30 0.10 0.10 0.88 0.95
ECS 1.05 0.15 0.15 0.86 0.96 -0.33 0.13 0.13 0.91 0.97
WCS 1.04 0.13 0.12 0.84 0.94 -0.33 0.12 0.11 0.91 0.93

Table: Estimates, RMSE and 95% coverage (CP) for n = 1000.



Simulation scenario 2: X ∼ (χ2
3 − 3)/

√
6

scenario 2 β1 = 1 β2 = −0.30
method Mean SD SE RMSE CP Mean SD SE RMSE CP
näive 0.58 0.18 0.17 0.59 0.27 -0.11 0.11 0.09 0.75 0.38
RC 0.76 0.24 0.22 0.69 0.77 -0.19 0.20 0.15 0.82 0.87
RRC 0.80 0.28 0.26 0.73 0.80 -0.21 0.25 0.18 0.84 0.91
ECS 1.11 0.60 0.54 1.05 0.95 -0.35 0.35 0.32 0.96 0.97
WCS 1.15 0.47 0.39 1.02 0.92 -0.39 0.37 0.25 1.01 0.93

Table: Estimates, RMSE and 95% coverage (CP) for n = 200.

scenario 2 β1 = 1 β2 = −0.30
method Mean SD SE RMSE CP Mean SD SE RMSE CP
näive 0.56 0.07 0.07 0.56 0.00 -0.13 0.03 0.03 0.75 0.00
RC 0.73 0.10 0.10 0.64 0.19 -0.21 0.06 0.06 0.82 0.62
RRC 0.75 0.11 0.11 0.65 0.36 -0.22 0.06 0.06 0.82 0.75
ECS 1.03 0.20 0.19 0.84 0.96 -0.32 0.10 0.09 0.91 0.96
WCS 1.01 0.16 0.16 0.83 0.95 -0.31 0.08 0.07 0.89 0.95

Table: Estimates, RMSE and 95% coverage (CP) for n = 1000.



Case Study: Diabetes survey data

• First, we obtained an approximate value for σ2 using
validation data.

• We then fitted each model using body mass index as a
covariate with quadratic terms.

method α̂1 β̂1 β̂2

näive -4.26 (1.13) 0.18 (0.08) -0.00271 (0.00167)
RC -5.02 (1.33) 0.23 (0.09) -0.00370 (0.00181)
RRC -5.06 (1.36) 0.24 (0.10) -0.00375 (0.00185)
ECS -4.92 (1.33) 0.22 (0.09) -0.00341 (0.00173)
WCS -4.86 (1.40) 0.22 (0.10) -0.00345 (0.00194)

Table: Estimates and standard errors (in parentheses) for each method.



Conclusion and Further Work

• Two new methods (RRC and WCS) for quadratic logistic
regression models were comparable (and in some cases better)
than known methods.

• However, some additional conditions were still needed.

• We could consider quadratic Berkson (measurement) error
models.

• We could also try to extend these methods to other link
functions e.g., probit or log-linear Poisson models.
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Simulation example of bias
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Regression Calibration cont. . .

• It follows that the conditional expectations are:
E(Xi |Wi ) = µxi |wi

and E(X 2
i |Wi ) = σ2xi |wi

+ µ2xi |wi

where µxi |wi
= µx + σ2

x
σ2
w

(Wi − µw ), σ2xi |wi
= σ2

σ2
w
σ2x

and σ2w = σ2x + σ2.

• Note that µx = µw , such that µx can be estimated by W ,
and since σ2 is given then σ2x = σ2w − σ2 can be similarly
estimated.



Example 2: Platypus body weight for males and females
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(a) qq−plot for female platypus body weight

 Body weight (kg)
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(b) qq−plot for male platypus body weight

 Body weight (kg)

(c) histogram of female platypus body weight

F
re

qu
en

cy

0.5 0.6 0.7 0.8 0.9 1.0 1.1

0

1

2

3

4

5

6

7

 Body weight (kg)

(d) histogram of male platypus body weight
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Case Study 2: Platypus capture–recapture data

• Here, the main interest was estimating capture probabilities
for each gender type using body weight as a covariate.

method α̂1 α̂2 β̂1 β̂2

naive -8.58 (4.80) -0.47 (1.01) 12.32 (8.23) -5.34 (3.12)
RC -8.79 (5.60) -0.44 (1.05) 12.70 (9.60) -5.53 (3.66)
RRC -9.17 (6.19) -0.45 (1.09) 13.38 (10.63) -5.82 (4.08)
ECS -10.77 (10.04) -0.66 (2.29) 16.38 (17.91) -7.04 (7.43)
WCS -11.87 (6.71) -0.91 (1.47) 18.22 (11.54) -7.66 (4.24)

Table: Estimates and non-parametric bootstrap standard errors (in
parentheses) for each method. Note that α̂2 here is the gender effect.
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