Application of a Bayesian Markov chain Monte Carlo approach for modelling the dynamics of Plasmodium falciparum parasitaemia in severe malaria patients

Dr. Sophie G Zaloumis¹, A/Prof. Julie A Simpson¹ and PKPD IV-ARS Study Group

¹Melbourne School of Population and Global Health, University of Melbourne

Biometrics by the Harbour 2015

Severe malaria

- Four different types of malaria parasites: falciparum, vivax, malariae, ovale
- falciparum most dangerous (responsible for 198 million clinical cases and approximately 584,000 deaths worldwide in 2013*)
- falciparum malaria can progress from uncomplicated (mild) to severe in a few hours
- Symptoms of severe malaria: very large parasite burden and major organ dysfunction

^{*}WHO (2014). World Malaria Report 2014 summary.

Treatment of severe malaria

- WHO recommends intra-venous artesunate (IV-ARS) as the first line treatment for adults and children with severe malaria*
- WHO treatment guidelines for severe malaria revised in 2015

Citation: CPT Pharmacometrics Syst. Pharmacol. (2014) 3, e145; doi:10.1038/psp.2014.43 @ 2014 ASCPT All rights reserved 2163-8306/14

ORIGINAL ARTICLE

Population Pharmacokinetics of Intravenous Artesunate: A Pooled Analysis of Individual Data From Patients With Severe Malaria

SG Zaloumis¹, J Taming⁴, S Krishna⁴, RN Price⁴, NJ White^{2,6}, TME Davis⁶, JM McCaw¹, P Olliaro^{6,7}, RJ Maude^{2,8}, P Kremsner^{4,10}, A Dondorp^{6,11}, M Gomes⁷, K Barnes¹² and JA Simpson¹

 Smaller children (body weight < 20kg) need a higher dose of IV-ARS to achieve drug exposures similar to children and adults with higher body weights

^{*} WHO (2015). Guidelines for the treatment of malaria (Third edition).

Project aims

- A mathematical model of how drug (IV-ARS) clears parasites from the patient has been developed*
- AIM: To fit this model to parasite counts measured over time in severe malaria patients treated with IV-ARS and examine the following:
 - Does this mechanistic model "fit/reproduce" the observed data?
 - Estimates of parameters governing in vivo drug action, e.g. fold reduction in parasite burden per hour of treatment

^{*} Saralamba S et al. (2011) PNAS, 108(1):397-402; Zaloumis S et al. (2012) Malaria Journal, 11:303

Data description

Study descriptions

Study	Site	Population	Design	No. patients
1	Malawi	Children	RCT	157
2	Ghana	Children	Cross-over	29
3	Gabon	Children	Cross-over	9
4	Bangladesh	Adults	Clinical study	17
5	Thailand	Adults	Cross-over	48
6	Vietnam	Adults	RCT	6
Total	_	_	_	265*

^{*} Children: 195; Adults: 70

Parasitaemia sampling

lacktriangledown parasitaemia — no. parasites / μ L of blood

Study	No. samples	Median (Min, Max) /patient	% < LoD (No.)
1	869	6 (1, 8)	13 (113)
2	167	6 (4, 8)	0 (0)
3	45	5 (1, 7)	0 (0)
4	84	3 (1, 14)	4 (3)
5	377	8 (4, 9)	16 (59)
6	69	12 (10, 12)	0 (0)
Total	1611	_	

Data description (cont.)

Asexual life cycle of falciparum within human RBCs

The life cycle lasts for 48 hrs on average

Age distribution of initial parasite load

Initial parasite load harboured by a patient on admission to a clinic (i.e., t = 0).

Model of parasite dynamics (growth)

$$\begin{aligned} N_{ki}(1, t+1) &= \underbrace{PMF_{ki}} \times N_{ki}(48, t) \\ N_{ki}(2, t+1) &= N_{ki}(1, t) \\ &\vdots \\ N_{ki}(48, t+1) &= N_{ki}(47, t) \end{aligned}$$

- $N_{ki}(a, t + 1)$ = the number of parasites aged a at time-point t + 1
- PMF = number of merozoites released by a ruptured schizont that successfully infect other RBCs

Model of parasite dynamics in presence of treatment

$$N_{ki}(1, t+1) = PMF_{ki} \times N_{ki}(48, t) \times s_i(t)$$
 $N_{ki}(2, t+1) = N_{ki}(1, t) \times s_i(t)$
 \vdots
 $N_{ki}(48, t+1) = N_{ki}(47, t) \times s_i(t)$

- s_i(t) = proportion of parasites that survive an hourly interval when the drug is active
- i = indexes the age intervals when DHA is either active or inactive

Ages (hrs)	Survival Function
1–5	$s_0(t) = 1$
6-44	$s_1(t) = \exp\{-k_{DHA}(t)\}$
45-48	$s_2(t) = 1$

Relationship between drug concentration & effect

Parameter	Description
k _{DHA}	Fold reduction in parasites killed / hour
С	Drug concentration at sampling time
	(predicted from population PK model)
k _{max}	Maximal killing constant of the drug (/h)
C50	Drug concentration at which
	parasite killing is 50% of maximum k_{max}
γ	Slope of the concentration
	-effect curve

Sigmoid relationship — based on results from in vitro assays on malaria cultures

Nonlinear mixed effects model

Within-subject: $\ln y_{ij} \sim N(\ln f(x_{ij}; \theta_i), \sigma^2)$

- $y_{ij} j^{th}$ observed parasitaemia measurement for the j^{th} individual
- f(x_{ij}; θ_i) predicted parasitaemia measurement
- x_{ij} = (t_{ij}, C_{ij}) are design variables (t_{ij} sampling time; C_{ij} predicted drug concentration)
- $\theta_i = [IPL_i, \mu_{IPL,i}, \sigma_{IPL,i}, PMF_i, k_{max,i}, \gamma_i, C50_i]'$ **individual parameters** constrained to be within biological plausible ranges
- σ^2 residual error/within-subject variability

Parameter	Range
IPL	$3.97 \times 10^9, 1.87 \times 10^{13}$
μ_{IPL} (h)	4, 28
$\sigma_{\it IPL}$ (h)	2, 14
PMF	4, 20
k_{max} (/h)	0.26, 0.6
γ	1, 13
C50 (ng/mL)	1, 533
(rig/filL)	1, 333

Zaloumis et al. (2012) [12]

Between-subject: $h(\theta_i) \sim MVN(h(\theta), \Sigma)$

- $\theta = [IPL, \mu_{IPL}, \sigma_{IPL}, PMF, k_{max}, \gamma, C50]'$ population parameters
- $h(u) = \log((u A)/(B u)) \text{ maps } u \in (A, B) \text{ to } \mathbb{R}$
- $\qquad \qquad \Sigma = \operatorname{diag}(\sigma_{h(IPL)}^2, \, \sigma_{h(\mu_{IPL})}^2, \, \sigma_{h(\sigma_{IPL})}^2, \, \sigma_{h(\sigma_{IPL})}^2, \, \sigma_{h(N)}^2, \, \sigma_{h(N)}^2, \, \sigma_{h(N)}^2, \, \sigma_{h(C50)}^2) \text{ between-subject variability on the transformed scale}$

Bayesian Inference

Posterior Distribution

$$\pi(\textit{h}(\theta_1), \dots, \textit{h}(\theta_N), \ln\sigma, \textit{h}(\theta), \ln\Sigma | \ln y) \\ \propto \underbrace{\pi(\ln y | \textit{h}(\theta_1), \dots, \textit{h}(\theta_N), \ln\sigma)}_{\text{Likelihood}} \times \underbrace{\pi(\textit{h}(\theta_1), \dots, \textit{h}(\theta_N) | \textit{h}(\theta), \ln\Sigma)}_{\text{Prior}} \times \underbrace{\pi(\textit{h}(\theta), \ln\Sigma, \ln\sigma)}_{\text{Hyperprior}}$$

Likelihood	Prior	Hyperprior
$\ln y_{ij} \sim N(\ln f_{ij}, \sigma^2)$	$h(\theta_i) \sim MVN(h(\theta), \Sigma)$	$\pi(h(heta)) \propto 1$
		$\pi(In\Sigma)\propto 1$
		$\pi(\ln\sigma)\propto 1$

Posterior simulation

- Gibbs sampler (with Metropolis steps) coded in R
- Parallel tempering used to improve performance of sampler for high-dimensional posterior distributions
 - Used R code from "R-bloggers, Parallel Tempering in R with R mpi" (http://www.r-bloggers.com/ parallel-tempering-in-r-with-rmpi/)
- 3 chains for 25 000 iterations each (10 000 discarded as burn-in)
- \bullet Single iteration 17.4 seconds (1 chain for 25 000 iterations \sim 7375.43 mins (5.12 days))

Preliminary results

Parameter	Posterior Median (95% Credible Interval)
Population parameters	1
IPL	$3.71 \times 10^{12} \ (5.0 \times 10^{12}, 1.09 \times 10^{12})$
μ IPL	31.41 (22.13, 37.83)
σ_{IPL}	10.24 (7.60, 12.09)
PMF	7.40 (6.20, 8.01)
k_{max} (/h)	
Rings (0-26 h)	0.47 (0.38, 0.52)
Trophozoites (27-38 h)	0.45 (0.40, 0.50)
Schizonts (39-48 h)	0.45 (0.37, 0.51)
γ	3.09 (1.85, 3.89)
C50 (ng/mL)	97.94 (15.59, 502.54)

Posterior predictive check

Conclusions

- Evidence that the model may under-predict parasitaemia after treatment with IV-ARS
- Sampling unconstrained parameters from the posterior could be causing slow exploration of the parameter space
- Data limited, e.g. only circulating parasitaemia observed and age specific parasitaemia measurements are not available

Future work

- Implement the Metropolis algorithm and sample parameters on the original scale
- Include steps to adapt the scale (Robbins-Munro step scaler) and variance parameters of the proposal distributions
- Improve efficiency of code by allowing the likelihood contribution for each subject can be computed in parallel

Acknowledgements

Study Collaborators - PKPD IV-ARS Study Group

Karen Barnes Richard Maude
Arjen Dondorp Paul Newton
Melba Gomes Piero Olliaro
Peter Kremsner Ric Price
Sanjeev Krishna Joel Tarning
Niklas Lindegardh Nick White

Funding

NHMRC project grant 1025319

