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Severe malaria

Four different types of malaria parasites: falciparum, vivax,
malariae, ovale

falciparum most dangerous (responsible for 198 million clinical
cases and approximately 584,000 deaths worldwide in 2013∗)

falciparum malaria can progress from uncomplicated (mild) to
severe in a few hours

Symptoms of severe malaria: very large parasite burden and
major organ dysfunction

∗WHO (2014). World Malaria Report 2014 summary.



Treatment of severe malaria

WHO recommends intra-venous artesunate (IV-ARS) as the first
line treatment for adults and children with severe malaria∗

WHO treatment guidelines for severe malaria revised in 2015

Smaller children (body weight < 20kg) need a higher dose of
IV-ARS to achieve drug exposures similar to children and adults
with higher body weights

∗WHO (2015). Guidelines for the treatment of malaria (Third edition).



Project aims

A mathematical model of how drug (IV-ARS) clears parasites
from the patient has been developed∗

AIM: To fit this model to parasite counts measured over time in
severe malaria patients treated with IV-ARS and examine the
following:

− Does this mechanistic model “fit/reproduce” the
observed data?

− Estimates of parameters governing in vivo drug action,
e.g. fold reduction in parasite burden per hour of
treatment

∗Saralamba S et al. (2011) PNAS, 108(1):397-402; Zaloumis S et al. (2012) Malaria Journal, 11:303



Data description

Study descriptions

Study Site Population Design No. patients

1 Malawi Children RCT 157

2 Ghana Children Cross-over 29

3 Gabon Children Cross-over 9

4 Bangladesh Adults Clinical study 17

5 Thailand Adults Cross-over 48

6 Vietnam Adults RCT 6

Total − − − 265∗

∗Children: 195; Adults: 70
Parasitaemia sampling

parasitaemia− no. parasites / µL of blood

Study No. samples Median (Min, Max) /patient % < LoD (No.)

1 869 6 (1, 8) 13 (113)

2 167 6 (4, 8) 0 (0)

3 45 5 (1, 7) 0 (0)

4 84 3 (1, 14) 4 (3)

5 377 8 (4, 9) 16 (59)

6 69 12 (10, 12) 0 (0)

Total 1611 −



Data description (cont.)

Time after drug administration (hours)
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Asexual life cycle of falciparum within human RBCs

The life cycle lasts for 48 hrs on average



Age distribution of initial parasite load

Parasite age (hours)
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Initial parasite load harboured by a patient on admission to a clinic (i.e., t = 0).



Model of parasite dynamics (growth)

Nki (1, t + 1) = PMFki × Nki (48, t)

Nki (2, t + 1) = Nki (1, t)

.

.

.

Nki (48, t + 1) = Nki (47, t)

Nki (a, t + 1) = the number of parasites aged
a at time-point t + 1

PMF = number of merozoites released by a
ruptured schizont that successfully infect
other RBCs Parasite age (hours)

27 38
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Model of parasite dynamics in presence of treatment

Nki (1, t + 1) = PMFki × Nki (48, t)× si (t)

Nki (2, t + 1) = Nki (1, t)× si (t)

.

.

.

Nki (48, t + 1) = Nki (47, t)× si (t)

Ages (hrs) Survival Function

1–5 s0(t) = 1

6–44 s1(t) = exp{−kDHA(t)}

45–48 s2(t) = 1

si (t) = proportion of parasites that
survive an hourly interval when
the drug is active

i = indexes the age intervals when
DHA is either active or inactive

Parasite age (hours)
27 38
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Relationship between drug concentration & effect

Killing constant

kDHA = kmax
Cγ

Cγ + C50γ

Parameter Description

kDHA Fold reduction in parasites killed / hour

C Drug concentration at sampling time

(predicted from population PK model)

kmax Maximal killing constant of the drug (/h)

C50 Drug concentration at which

parasite killing is 50% of maximum kmax

γ Slope of the concentration

-effect curve

Drug concentration (C)
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Sigmoid relationship− based on results
from in vitro assays on malaria cultures



Nonlinear mixed effects model

Within-subject: lnyij ∼ N(lnf (xij ; θi ), σ
2)

yij − j th observed parasitaemia measurement

for the i th individual
f (xij ; θi )− predicted parasitaemia
measurement
xij = (tij , Cij ) are design variables (tij −
sampling time; Cij − predicted drug
concentration)

θi = [IPLi , µIPL,i , σIPL,i , PMFi , kmax,i , γi ,
C50i ]

′ − individual parameters constrained
to be within biological plausible ranges

σ2 − residual error/within-subject variability

Parameter Range

IPL 3.97× 109, 1.87× 1013

µIPL (h) 4, 28

σIPL (h) 2, 14

PMF 4, 20

kmax (/h) 0.26, 0.6

γ 1, 13

C50 (ng/mL) 1, 533

Zaloumis et al. (2012) [12]

Between-subject: h(θi ) ∼ MVN(h(θ),Σ)

θ = [IPL, µIPL, σIPL, PMF , kmax , γ, C50]′ − population parameters

h(u) = log((u − A)/(B − u)) maps u ∈ (A, B) to R

Σ = diag(σ2
h(IPL), σ2

h(µIPL), σ2
h(σIPL), σ2

h(PMF ), σ2
h(kmax ) , σ2

h(γ), σ2
h(C50))− between-subject variability

on the transformed scale



Bayesian Inference

Posterior Distribution

π(h(θ1), . . . , h(θN ), lnσ, h(θ), lnΣ|lny)

∝ π(lny |h(θ1), . . . , h(θN ), lnσ)︸ ︷︷ ︸
Likelihood

×π(h(θ1), . . . , h(θN )|h(θ), lnΣ)︸ ︷︷ ︸
Prior

×π(h(θ), lnΣ, lnσ)︸ ︷︷ ︸
Hyperprior

Likelihood Prior Hyperprior
lnyij ∼ N(lnfij , σ2) h(θi ) ∼ MVN(h(θ),Σ) π(h(θ)) ∝ 1

π(lnΣ) ∝ 1
π(lnσ) ∝ 1



Posterior simulation

Gibbs sampler (with Metropolis steps) coded in R

Parallel tempering used to improve performance of sampler for
high-dimensional posterior distributions

− Used R code from “R-bloggers, Parallel Tempering in R with R mpi”
(http://www.r-bloggers.com/
parallel-tempering-in-r-with-rmpi/)

3 chains for 25 000 iterations each (10 000 discarded as burn-in)

Single iteration 17.4 seconds (1 chain for 25 000 iterations ∼
7375.43 mins (5.12 days))

http://www.r-bloggers.com/parallel-tempering-in-r-with-rmpi/
http://www.r-bloggers.com/parallel-tempering-in-r-with-rmpi/


Preliminary results

Parameter Posterior Median (95% Credible Interval)
Population parameters
IPL 3.71 × 1012 (5.0 × 1012, 1.09 × 1012)
µIPL 31.41 (22.13, 37.83)
σIPL 10.24 (7.60, 12.09)
PMF 7.40 (6.20, 8.01)
kmax (/h)
Rings (0-26 h) 0.47 (0.38, 0.52)
Trophozoites (27-38 h) 0.45 (0.40, 0.50)
Schizonts (39-48 h) 0.45 (0.37, 0.51)
γ 3.09 (1.85, 3.89)
C50 (ng/mL) 97.94 (15.59, 502.54)



Posterior predictive check

Time after drug administration (hours)
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Conclusions

Evidence that the model may under-predict parasitaemia after
treatment with IV-ARS

Sampling unconstrained parameters from the posterior could be
causing slow exploration of the parameter space

Data limited, e.g. only circulating parasitaemia observed and
age specific parasitaemia measurements are not available

Future work

Implement the Metropolis algorithm and sample parameters on
the original scale

Include steps to adapt the scale (Robbins-Munro step scaler)
and variance parameters of the proposal distributions

Improve efficiency of code by allowing the likelihood contribution
for each subject can be computed in parallel
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