Evaluating predictive loss for models with observation-level latent variables

Russell Millar University of Auckland

Dec 2015

Notation

- $\mathbf{y} = (y_1, ..., y_n)$, observations with density $p(\mathbf{y})$
- $\theta \in \mathbb{R}^d$, parameter vector
- $p(y|\theta)$, the model
- $p(\theta)$, prior
- z, future realizations from true distribution of y.
- $D(\theta) = -2 \log p(y|\theta)$, deviance function

DIC, the Dirty Information Criterion

Widely used: Spiegelhalter et al. (2002) > 6500 cites.

DIC can be written as

$$DIC = \overline{D(\theta)} + \rho ,$$

where p is a penalty term to correct for using the data twice.

A Taylor series expansion of $D(\theta)$ around $\overline{\theta} = \mathbb{E}_{\theta|y}[\theta]$ "suggests" that p can be estimated as the posterior expected value of $D(\theta) - D(\overline{\theta})$, giving

$$p_D = \overline{D(\theta)} - D(\overline{\theta})$$
.

- Not invariant to re-parameterization due to use of $\overline{\theta}$. $\overline{\theta}$
- pD can be negative if deviance is not concave. ②②③
- Never explicitly stated what DIC is trying to estimate!!!

WAIC, Widely Applicable Information Criteria

Sumio Watanabe (2009) developed a singular learning theory derived using algebraic geometry results developed by Heisuke Hironaka (who earned a Fields medal in 1970 for his work).

It is assumed that $p(y_i|\theta)$ are independent.

WAIC, Widely Applicable Information Criteria

Sumio Watanabe (2009) developed a singular learning theory derived using algebraic geometry results developed by Heisuke Hironaka (who earned a Fields medal in 1970 for his work).

It is assumed that $p(y_i|\theta)$ are independent.

Watanabe defines several WAIC variants. One particular variant has gained popularity due to:

- It's asymptotic equivalence with Bayesian leave-one-out cross-validation (LOO-CV), Watanabe (2010).
- It's high degree of approximation to its target loss

WAIC, Widely Applicable Information Criteria

WAIC =
$$-2\sum_{i=1}^{n} \log p(y_i|\mathbf{y}) + 2V$$
$$= -2\sum_{i=1}^{n} \log \int p(y_i|\theta)p(\theta|\mathbf{y})d\theta + 2V,$$

where

$$V = \sum_{i=1}^{n} \operatorname{Var}_{\boldsymbol{\theta}|\boldsymbol{y}}(\log p(y_i|\boldsymbol{\theta})).$$

Watanabe showed that $E_Y[WAIC]$ is an asymptotically unbiased estimator of $E_Y(B)$ where

$$B = -2\sum_{i=1}^n E_{Z_i} \left[\log p_i(z_i|\boldsymbol{y})\right] = -2\sum_{i=1}^n E_{Z_i} \left[\log \int p(z_i|\boldsymbol{\theta})p(\boldsymbol{\theta}|\boldsymbol{y})d\boldsymbol{\theta}\right].$$

This holds under very general conditions, including for non-identifiable, singular and unrealizable models.

LOO-CVL, Leave-one-out Cross-validation

Letting \mathbf{y}_{-i} denote the observations with y_i removed, a natural approximation for B is the LOO-CVL estimator

$$CVL = \sum_{i=1}^{n} CVL_i ,$$

where

$$CVL_{i} = -2 \log p(y_{i}|\mathbf{y}_{-i})$$

$$= -2 \log \int p(y_{i}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{y}_{-i})d\boldsymbol{\theta}. \qquad (1)$$

CVL has asymptotic bias of O(1/n) as an estimator of B.

LOO-CVL, Leave-one-out Cross-validation

Letting \mathbf{y}_{-i} denote the observations with y_i removed, a natural approximation for B is the LOO-CVL estimator

$$CVL = \sum_{i=1}^{n} CVL_i ,$$

where

$$CVL_{i} = -2 \log p(y_{i}|\mathbf{y}_{-i})$$

$$= -2 \log \int p(y_{i}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{y}_{-i})d\boldsymbol{\theta}. \qquad (1)$$

CVL has asymptotic bias of O(1/n) as an estimator of B.

But, direct estimation of CVL can be **very** computationally intensive since it requires samples from n posteriors $p(\theta|\mathbf{y}_{-i}), i=1,...,n$. This direct estimator will be denoted $\widehat{\text{CVL}}$.

Importance sampling approximation to LOO-CVL

 $p(y_i|\mathbf{y}_{-i})$ can be expressed as the harmonic mean of $p(y_i|\theta)$ with respect to the full posterior,

$$p(y_i|\mathbf{y}_{-i}) = \left(\int \frac{1}{p(y_i|\boldsymbol{\theta})} p(\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta}\right)^{-1},$$

and so $p(y_i|\mathbf{y}_{-i})$ can be estimated as

$$\widehat{p}(y_i|\mathbf{y}_{-i}) = \frac{S}{\sum_{s=1}^{S} \frac{1}{p(y_i|\theta^{(s)})}},$$
(2)

where $\theta^{(s)}$, s = 1, ..., S, is a sample from $p(\theta|\mathbf{y})$. Thus, each CVL_i , i = 1, ..., n and hence $\text{CVL} = \sum_{i=1}^{n} \text{CVL}_i$ can be estimated from a single posterior sample.

The importance-sampling estimator of CVL will be denoted \widehat{ISCVL} .

Importance sampling approximation to LOO-CVL

 $p(y_i|\mathbf{y}_{-i})$ can be expressed as the harmonic mean of $p(y_i|\theta)$ with respect to the full posterior,

$$p(y_i|\mathbf{y}_{-i}) = \left(\int \frac{1}{p(y_i|\boldsymbol{\theta})} p(\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta}\right)^{-1},$$

and so $p(y_i|\mathbf{y}_{-i})$ can be estimated as

$$\widehat{p}(y_i|\mathbf{y}_{-i}) = \frac{S}{\sum_{s=1}^{S} \frac{1}{p(y_i|\theta^{(s)})}},$$
(2)

where $\theta^{(s)}$, s = 1, ..., S, is a sample from $p(\theta|\mathbf{y})$. Thus, each CVL_i , i = 1, ..., n and hence $\text{CVL} = \sum_{i=1}^{n} \text{CVL}_i$ can be estimated from a single posterior sample.

The importance-sampling estimator of CVL will be denoted $\widehat{\mathrm{ISCVL}}$.

Note that (2) can be highly unstable when $\theta^{(s)}$ is in the tails of $p(y_i|\theta^{(s)})$.

Importance sampling approximation to LOO-CVL

It is very useful to quantify the reliability of importance sampling using the notion of effective sample size. The effective sample size is with respect to a sample from $p(\theta|\mathbf{y}_{-i})$ for evaluating CVL_i using (1).

For observation i, ESS $_i$ can be calculated as

$$ESS_i = \frac{n\overline{w_i}^2}{\overline{w_i^2}} ,$$

where $w_{si} = p(y_i|\theta^{(s)})^{-1}$ and $\overline{w_i}$ is the mean of the weights w_{si} , s = 1, ..., S, and $\overline{w_i^2}$ is the mean of the squared weights w_{si}^2 , s = 1, ..., S.

Evaluation of predictive loss

Recent work has examined the relative performance of WAIC, CVL and IS-CVL in the context of normal models.

I have been examining their performance with regard to:

- Model focus (i.e., level of hierarchy at which likelihood is specified).
- Use with non-normal data.

Evaluation of predictive loss

Recent work has examined the relative performance of WAIC, CVL and IS-CVL in the context of normal models.

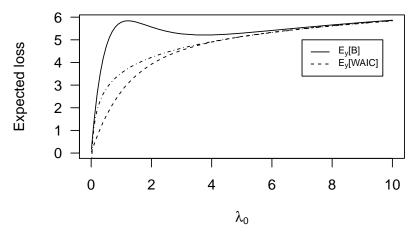
I have been examining their performance with regard to:

- Model focus (i.e., level of hierarchy at which likelihood is specified).
- Use with non-normal data.

Models for over-dispersed count data incorporate both of these issues.

E.g., the negative binomial density can be expressed directly (marginal focus), or as a Poisson density conditional on an underlying gamma latent variable (conditional focus).

Evaluation of predictive loss, $y \sim \text{Pois}(\lambda)$



WAIC approximation not so good until normal approximation (to Poisson) kicks in at around $\lambda_0=5$.

Evaluation of predictive loss, $y \sim Pois(\lambda)$

FYI, the underlying R code to numerically evaluate B for $y \sim \text{Pois}(\lambda_0)$.

```
BayesLoss=function(y,lambda0,alpha=0.001,beta=0.001) {
   yrep_limits=qpois(c(1e-15,1-1e-15),lambda0)
   yrep_grid=seq(yrep_limits[1],yrep_limits[2]) #Grid of values for reps
   grid_probs=dpois(yrep_grid,lambda0) #Probabilities over the grid
   grid_pd=dnbinom(yrep_grid,size=y+alpha,mu=(y+alpha)/(beta+1)) #Pred densi
   BLoss=-2*sum(grid_probs*log(grid_pd)) #Predictive loss, B, for a given y
   return(BLoss) }
```

How well can the predictive criteria distinguish the following three models?

- Poisson: $y_i | \mu \sim \text{Pois}(\mu)$
- PGA: $y_i | \lambda_i \sim \text{Pois}(\lambda_i)$ where $\lambda_i \sim \Gamma(\alpha, \alpha/\mu)$
- PLN: $y_i | \lambda_i \sim \operatorname{Pois}(\lambda_i)$ where $\lambda_i \sim \operatorname{LN}(\log(\mu) 0.5\tau^2, \tau^2)$

These are conditional-level specifications.

How well can the predictive criteria distinguish the following three models?

- Poisson: $y_i | \mu \sim \text{Pois}(\mu)$
- PGA: $y_i | \lambda_i \sim \text{Pois}(\lambda_i)$ where $\lambda_i \sim \Gamma(\alpha, \alpha/\mu)$
- PLN: $y_i | \lambda_i \sim \operatorname{Pois}(\lambda_i)$ where $\lambda_i \sim \operatorname{LN}(\log(\mu) 0.5\tau^2, \tau^2)$

These are conditional-level specifications.

For the PLN the marginal-level likelihood is

$$p(y_i|\mu,\tau) = \int \left(\frac{e^{-\lambda_i}\lambda_i^{y_i}}{y_i!}\right) \left(\frac{e^{-(\log \lambda_i - \nu)^2/2\tau^2}}{\sqrt{2\pi}\tau\lambda_i}\right) d\lambda_i ,$$

where $\nu = \log(\mu) - 0.5\tau^2$.

How well can the predictive criteria distinguish the following three models?

- Poisson: $y_i | \mu \sim \text{Pois}(\mu)$
- PGA: $y_i | \lambda_i \sim \text{Pois}(\lambda_i)$ where $\lambda_i \sim \Gamma(\alpha, \alpha/\mu)$
- PLN: $y_i | \lambda_i \sim \text{Pois}(\lambda_i)$ where $\lambda_i \sim \text{LN}(\log(\mu) 0.5\tau^2, \tau^2)$

These are conditional-level specifications.

For the PLN the marginal-level likelihood is

$$p(y_i|\mu,\tau) = \int \left(\frac{e^{-\lambda_i}\lambda_i^{y_i}}{y_i!}\right) \left(\frac{e^{-(\log \lambda_i - \nu)^2/2\tau^2}}{\sqrt{2\pi}\tau\lambda_i}\right) d\lambda_i ,$$

where $\nu = \log(\mu) - 0.5\tau^2$.

...or just dpoilog(y[i],nu,tau) in R.

The simulation generated $y_i, i=1,...,160$ from each of the three models (using $\mu=1$ and $\tau=1.5$), and fitted each of the three models to these data.

 $\widehat{\mathrm{WAIC}}_c$ and $\widehat{\mathrm{ISCVL}}_c$ denote the predicted losses estimated using conditional-level likelihood.

Denoted $\widehat{\mathrm{WAIC}}_m$ and $\widehat{\mathrm{ISCVL}}_m$ at marginal level.

It can be shown that:

- CVL_c and CVL_m are identical, and are valid approximations to B_m .
- WAIC_m is a valid approximation to B_m .
- WAIC_c may, or may not, be a valid approximation to B_c .

Simulation study: Conditional-level comparison

True		Fitted model				Propn minimum		
model	Criterion	Р	PGA	PLN	Р	PGA	PLN	
	<u> </u>							
Р	$\hat{\mathrm{ISCVL}}_c$	419.1	419.6	419.5	0.83	0.10	0.07	
	$\widehat{\mathrm{WAIC}}_{oldsymbol{c}}$	419.1	419.0	419.1	0.60	0.28	0.12	
	$min\mathrm{ESS}$	4612	207	1359				
DC A	100VI	701.0	070.0	001.0	0.00	0.00	0.01	
PGA	$\widehat{\mathrm{ISCVL}}_c$	731.0	272.8	291.2	0.00	0.99	0.01	
	$\widehat{\mathrm{WAIC}}_c$	730.9	219.4	240.1	0.00	1.00	0.00	
	$min\mathrm{ESS}$	188	2	2				
PLN	$\widehat{\mathrm{ISCVL}}_{c}$	643.5	374.5	377.4	0.00	0.66	0.34	
	$\widehat{\mathrm{WAIC}}_{C}$	644.2	319.0	333.5	0.00	1.00	0.00	
	min ESS	23	2	2				

Table : Mean values (over 100 simulations) of \widehat{ISCVL} and \widehat{WAIC} , and hierarchical means of minimum ESS, from fitting Poisson (P), Poisson-gamma (PGA) and Poisson-lognormal (PLN) models to simulated data. The posterior sample size was 5 000.

Simulation study: Marginal-level comparison

True	Fitted model			Propn minimum			
model	Criterion	Р	PGA	PLN	Р	PGA	PLN
Р	$\hat{\mathrm{ISCVL}}_m$	419.1	419.6	419.6	0.87	0.06	0.07
	$\widehat{\mathrm{WAIC}}_m$	419.1	419.6	419.6	0.87	0.06	0.07
	$min\mathrm{ESS}$	4612	4439	4424			
PGA	$\widehat{\mathrm{ISCVL}}_m$	731.0	345.9	351.2	0.00	0.94	0.06
	$\widehat{\mathrm{WAIC}}_m$	730.9	345.9	351.2	0.00	0.94	0.06
	$\min \mathrm{ESS}$	188	1070	4166			
PLN	$\widehat{\mathrm{ISCVL}}_m$	643.5	412.8	406.6	0.00	0.20	0.80
	$\widehat{\mathrm{WAIC}}_m$	644.2	412.6	406.5	0.00	0.20	0.80
	$min\mathrm{ESS}$	23	40	952			

Table : Mean values (over 100 simulations) of \widehat{ISCVL} and \widehat{WAIC} , and hierarchical means of minimum ESS, from fitting Poisson (P), Poisson-gamma (PGA) and Poisson-lognormal (PLN) models to simulated data. The posterior sample size was 5 000.

Application to counts of goatfish

Application to counts of goatfish

	Fitted model						
Criterion	Р	PGA	PLN	Δ			
Conditional							
$\widehat{\mathrm{CVL}}_c$	482.1	349.7	355.1	5.4			
$\widehat{\mathrm{ISCVL}}_c$	479.8	319.9	328.7	8.8			
$\widehat{\mathrm{WAIC}}_{oldsymbol{c}}$	477.5	273.9	286.0	12.1			
min ESS	14.3	4.3	1.5				
Marginal							
$\widehat{\mathrm{CVL}}_m$	482.1	349.7	355.1	5.4			
$\widehat{\mathrm{ISCVL}}_m$	479.8	349.6	355.1	5.5			
$\widehat{\mathrm{WAIC}}_m$	477.5	348.2	354.5	6.3			
min ESS	14.3	189.7	2108.6				

Table : \widehat{CVL} , \widehat{ISCVL} , \widehat{WAIC} and minimum effective sample size from fitting Poisson (P), Poisson-gamma (PGA) and Poisson-lognormal (PLN) models to goatfish count data. Δ gives the difference between the PGA and PLN losses. The posterior sample size was 10 000.

Summary: Take home advice

- Use marginal-level likelihood where possible (it has fatter tails than conditional-level likelihood).
- Here, $\widehat{\text{CVL}}_c$ was reliable at conditional level.
- Be sure to check effective sample size if using ISCVL (an ESS in the 100's appeared to be enough).
- ullet Regularized forms of $\widehat{\mathrm{ISCVL}}$ were examined, but did not provide any improvement.
- It is a good idea to evaluate both \widehat{ISCVL} and \widehat{WAIC} and hope that they are little different (since they are different approximations to the same thing).
- WAIC can be unreliable if $\operatorname{Var}_{\theta|y}(\log p(y_i|\theta)) > 1$ for any i (this corresponds to a high influence point and the underlying WAIC approximation to B is liable to be inaccurate).